Dissociative photoionization of mono-, di- and trimethylamine studied by a combined threshold photoelectron photoion coincidence spectroscopy and computational approach.

نویسندگان

  • Andras Bodi
  • Bálint Sztáray
  • Tomas Baer
چکیده

Energy selected mono-, di- and trimethylamine ions were prepared by threshold photoelectron photoion coincidence spectroscopy (TPEPICO). Below 13 eV, the main dissociative photoionization path of these molecules is hydrogen atom loss. The ion time-of-flight (TOF) distributions and breakdown diagrams for H loss are analyzed in terms of the statistical RRKM theory, which includes tunneling. Experimental evidence, supported by quantum chemical calculations, indicates that the reverse barrier along the H loss potential energy curve for monomethylamine is 1.8 +/- 0.6 kJ mol(-1). Accurate dissociation onset energies are derived from the TOF simulation, and from this analysis we conclude that Delta(f)H degrees (298K)[CH(2)NH(2)(+)] = 750.4 +/- 1.3 kJ mol(-1) and Delta(f)H degrees (298K)[CH(2)NH(CH(3))(+)] = 710.9 +/- 2.8 kJ mol(-1). Quantum chemical calculations at the G3, G3B3, CBS-APNO and W1U levels are extensively used to support the experimental data. The comparison between experimental and ab initio isodesmic reaction heats also suggests that Delta(f)H degrees (298K)[N(CH(3))(3)] = -27.2 +/- 2 kJ mol(-1), and that the dimethylamine ionization energy is 8.32 +/- 0.03 eV, both of which are in slight disagreement with previous experimental values. Above 13 eV photon energy, additional dissociation channels appear besides the H atom loss, such as a sequential C(2)H(4) loss from trimethylamine for which a dissociation mechanism is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissociative photoionization and thermochemistry of dihalomethane compounds studied by threshold photoelectron photoion coincidence spectroscopy.

The dissociative photoionization studies have been performed for a set of dihalomethane CH(2)XY (X,Y = Cl, Br, and I) molecules employing the threshold photoelectron photoion coincidence (TPEPICO) technique. Accurate dissociation onsets for the first and second dissociation limits have been recorded in the 10-13 eV energy range, and ionization potentials have been measured for these compounds. ...

متن کامل

Dissociation of internal energy-selected methyl bromide ion revealed from threshold photoelectron-photoion coincidence velocity imaging.

Dissociative photoionization of methyl bromide (CH3Br) in an excitation energy range of 10.45-16.90 eV has been investigated by using threshold photoelectron-photoion coincidence (TPEPICO) velocity imaging. The coincident time-of-flight mass spectra indicate that the ground state X(2)E of CH3Br(+) is stable, and both A(2)A1 and B(2)E ionic excited states are fully dissociative to produce the un...

متن کامل

Heats of formation of HCCl3, HCCl2Br, HCClBr2, HCBr3, and their fragment ions studied by threshold photoelectron photoion coincidence.

The dissociative photoionization onsets for Cl and Br loss reactions were measured for HCCl3, HCCl2Br, HCClBr2, and HCBr3 by threshold photoelectron photoion coincidence (TPEPICO) in order to establish the heats of formation of the mixed halides as well as the following fragment ions: HCCl2(+), HCClBr(+), HCBr2(+). The first zero Kelvin onsets were measured with a precision of 10 meV. The secon...

متن کامل

Pulsed field-ionization photoelectron-photoion coincidence study of the process N2+hnu-->N++N+e-: bond dissociation energies of N2 and N2+.

We have examined the dissociative photoionization reaction N2+hnu-->N++N+e- near its threshold using the pulsed field-ionization photoelectron-photoion coincidence (PFI-PEPICO) time-of-flight (TOF) method. By examining the kinetic-energy release based on the simulation of the N+ PFI-PEPICO TOF peak profile as a function of vacuum ultraviolet photon energy and by analyzing the breakdown curves o...

متن کامل

Heats of formation of C(6)H(5)(•), C(6)H(5)(+), and C(6)H(5)NO by threshold photoelectron photoion coincidence and active thermochemical tables analysis.

Threshold photoelectron photoion coincidence has been used to prepare selected internal energy distributions of nitrosobenzene ions [C(6)H(5)NO(+)]. Dissociation to C(6)H(5)(+) + NO products was measured over a range of internal energies and rate constants from 10(3) to 10(7) s(-1) and fitted with the statistical theory of unimolecular decay. A 0 K dissociative photoionization onset energy of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2006